Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera.

Identifieur interne : 000132 ( Main/Exploration ); précédent : 000131; suivant : 000133

Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera.

Auteurs : Thomas E. Smith [États-Unis] ; Nancy A. Moran [États-Unis]

Source :

RBID : pubmed:31964845

Descripteurs français

English descriptors

Abstract

Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont Buchnera is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic; Buchnera titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in Buchnera titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that Buchnera gene expression changes in response. By comparing hosts with low and high Buchnera titer, we found that aphids and Buchnera oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific Buchnera functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."

DOI: 10.1073/pnas.1916748117
PubMed: 31964845
PubMed Central: PMC6995025


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and
<i>Buchnera</i>
.</title>
<author>
<name sortKey="Smith, Thomas E" sort="Smith, Thomas E" uniqKey="Smith T" first="Thomas E" last="Smith">Thomas E. Smith</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 tom.e.smith@utexas.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin</wicri:regionArea>
<orgName type="university">Université du Texas à Austin</orgName>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moran, Nancy A" sort="Moran, Nancy A" uniqKey="Moran N" first="Nancy A" last="Moran">Nancy A. Moran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Integrative Biology, University of Texas at Austin, Austin</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31964845</idno>
<idno type="pmid">31964845</idno>
<idno type="doi">10.1073/pnas.1916748117</idno>
<idno type="pmc">PMC6995025</idno>
<idno type="wicri:Area/Main/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000132</idno>
<idno type="wicri:Area/Main/Curation">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000132</idno>
<idno type="wicri:Area/Main/Exploration">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and
<i>Buchnera</i>
.</title>
<author>
<name sortKey="Smith, Thomas E" sort="Smith, Thomas E" uniqKey="Smith T" first="Thomas E" last="Smith">Thomas E. Smith</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 tom.e.smith@utexas.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Integrative Biology, University of Texas at Austin, Austin</wicri:regionArea>
<orgName type="university">Université du Texas à Austin</orgName>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moran, Nancy A" sort="Moran, Nancy A" uniqKey="Moran N" first="Nancy A" last="Moran">Nancy A. Moran</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>Department of Integrative Biology, University of Texas at Austin, Austin</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Aphids (genetics)</term>
<term>Aphids (microbiology)</term>
<term>Aphids (physiology)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Buchnera (classification)</term>
<term>Buchnera (genetics)</term>
<term>Buchnera (physiology)</term>
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Host Specificity (MeSH)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Aphides (génétique)</term>
<term>Aphides (microbiologie)</term>
<term>Aphides (physiologie)</term>
<term>Buchnera (classification)</term>
<term>Buchnera (génétique)</term>
<term>Buchnera (physiologie)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Spécificité d'hôte (MeSH)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Bacterial Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Buchnera</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aphids</term>
<term>Buchnera</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aphides</term>
<term>Buchnera</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Aphides</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Aphids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Aphides</term>
<term>Buchnera</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Aphids</term>
<term>Buchnera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Host Specificity</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Spécificité d'hôte</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont
<i>Buchnera</i>
is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic;
<i>Buchnera</i>
titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in
<i>Buchnera</i>
titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that
<i>Buchnera</i>
gene expression changes in response. By comparing hosts with low and high
<i>Buchnera</i>
titer, we found that aphids and
<i>Buchnera</i>
oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific
<i>Buchnera</i>
functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31964845</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>117</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>01</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and
<i>Buchnera</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>2113-2121</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1916748117</ELocationID>
<Abstract>
<AbstractText>Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont
<i>Buchnera</i>
is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic;
<i>Buchnera</i>
titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in
<i>Buchnera</i>
titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that
<i>Buchnera</i>
gene expression changes in response. By comparing hosts with low and high
<i>Buchnera</i>
titer, we found that aphids and
<i>Buchnera</i>
oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific
<i>Buchnera</i>
functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Thomas E</ForeName>
<Initials>TE</Initials>
<Identifier Source="ORCID">0000-0002-4031-7753</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 tom.e.smith@utexas.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moran</LastName>
<ForeName>Nancy A</ForeName>
<Initials>NA</Initials>
<Identifier Source="ORCID">0000-0003-2983-9769</Identifier>
<AffiliationInfo>
<Affiliation>Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F32 GM126706</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001042" MajorTopicYN="N">Aphids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020635" MajorTopicYN="N">Buchnera</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058507" MajorTopicYN="N">Host Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Buchnera</Keyword>
<Keyword MajorTopicYN="Y">RNA-seq</Keyword>
<Keyword MajorTopicYN="Y">aphids</Keyword>
<Keyword MajorTopicYN="Y">host–symbiont interactions</Keyword>
<Keyword MajorTopicYN="Y">symbiosis</Keyword>
</KeywordList>
<CoiStatement>The authors declare no competing interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31964845</ArticleId>
<ArticleId IdType="pii">1916748117</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1916748117</ArticleId>
<ArticleId IdType="pmc">PMC6995025</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2017 Dec 7;434:75-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28624393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Feb 13;580(4):1164-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16288742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25713367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Dec 29;9:559</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2005 Feb;7(2):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2014 Oct 23;6(11):a022616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25341920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Dec;8(12):2490-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2012 Jun;15(3):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22381679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2015 Jul;32(7):904-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(15):5345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2009 Mar 10;7:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19284544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2013 Jan 7;280(1750):20121952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23173201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6824-6829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28611217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Nov;1814(11):1518-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21315854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2003 Oct;1(1):E21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2849-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9376-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26170303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1999 Oct;34(1):82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10540287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 30;328(5978):624-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20431015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13114-13119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):71-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25474014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Jan 12;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28079523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2001 Sep;204(Pt 17):3027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11551991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Sep;188(18):6539-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16952945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Jul 10;8(1):10-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24953654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Dec;72(12):7760-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Mol Biol. 2010 Mar;19 Suppl 2:241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20482654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 1997;200(Pt 15):2137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9320049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 20;153(7):1567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):320-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24367072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Aug 30;8(9):3083-3091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30049746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1819-E1828</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29432146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Oct;79(19):6117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23892755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Sep;40(16):7870-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22689638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2018 Jan;107(2):142-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29178391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Jul;194(13):3395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22544270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2011 Feb;68(4):613-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21072677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2018 Oct 25;9:1498</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30410449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 16;323(5912):379-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2013 Nov;23(11):522-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23721880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2018 Apr;95:55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29526771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2016 Jan 25;26(2):207-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26748854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:155-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2015 Jul;62:211-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Jun;48(6):1491-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12791133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14543-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14527994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2016 Aug 8;38(3):235-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27453503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20178569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Mar;133(5):957-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Appl Genet Mol Biol. 2005;4:Article17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16646834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16831-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21930912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(12):e29096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jun;187(12):4229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Mar;9(3):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18268509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Mar;1818(3):627-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22166843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2019 Oct 17;179(3):703-712.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31587897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2009 Apr;55(4):351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Sep;67(17):2897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20446015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 Jul 2;8(7):2433-2443</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29769291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Apr 04;82(8):2336-2346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26850304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Sep 7;407(6800):81-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10993077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jul 17;6:7814</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26183829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Feb;73(4):1362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Dev Biol. 2007 Nov 02;7:121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17980035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2014 Sep 26;5:510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 Apr;27(8):1766-1776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29134727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Jun;10(6):M110.007039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Feb 26;6(2):e1000827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20195500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evodevo. 2016 Nov 21;7:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27895889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2015 Jul 15;35(28):10154-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26180192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Nov;75(22):7294-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19783752</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
<settlement>
<li>Austin (Texas)</li>
</settlement>
<orgName>
<li>Université du Texas à Austin</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Smith, Thomas E" sort="Smith, Thomas E" uniqKey="Smith T" first="Thomas E" last="Smith">Thomas E. Smith</name>
</region>
<name sortKey="Moran, Nancy A" sort="Moran, Nancy A" uniqKey="Moran N" first="Nancy A" last="Moran">Nancy A. Moran</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31964845
   |texte=   Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31964845" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020